Mutations in white blood cells can contribute to abnormal immune profile after hematopoietic stem cell transplantation.

Graft-versus-host disease (GvHD) is a potentially life-threatening medical condition that is common after allogeneic hematopoietic stem cell transplantation, the only curative treatment for various types of leukemias. In GvHD, white blood cells from transplant donor recognize recipient cells as non-self and attack recipient tissues. Understanding how these donor white blood cells remain active against recipient cells can pave the way for novel treatment strategies in GvHD.

A research project led by Professor Satu Mustjoki at the University of Helsinki investigated the role of T cell mutations in GvHD. Somatic or so-called acquired mutations during lifetime are common in cancer cells, but little is known about their existence and significance in other cells, such as cells in the body’s defense system.

Published in the journal Nature Communications, the study first identified an index chronic GvHD patient with an activating somatic mutation in a gene called mTOR, which regulates cell growth and cell survival.

The authors then screened an international cohort of 135 GvHD patients and 54 healthy blood donors. By using next generation sequencing, the scientists found that 2.2% of chronic GvHD patients, but none of the healthy blood donors, harbored a mutation in mTOR.

“What makes our finding particularly significant is that the mutation now found was recurrent, meaning that the same mutation was found in several patients with chronic GvHD,” says professor Satu Mustjoki.

“Our previous studies in rheumatoid arthritis had shown that acquired mutations could be found in T cells, but in these studies, the mutations had been isolated and the same mutations had not been found in more than one patient.”

Individualized treatments for patients

Using single-cell RNA sequencing and T cell receptor sequencing on samples collected from the index patient, researchers found that the mTOR mutated CD4+ T cell clone expanded during the course of GvHD despite immunosuppressive treatment, suggesting the mutation contributed to the disease pathogenesis.

In addition, it was found that the mutation was located in so-called cytotoxic T cells and these cells were able to damage the body’s own cells. Researchers also investigated the mTOR mutation in more detail by introducing it into a human cell line. The activating mTOR mutation promoted cell proliferation and cell survival.

The researchers performed a high-throughput drug screen with 527 drugs to identify potential targeted therapies. The index patients’ CD4+ T cells were sensitive to a specific class of drugs called HSP90 inhibitors, suggesting that these drugs could be used to treat GvHD in the future.

“Our study helps to understand the mechanisms of activation of the immune system in GvHD. Although several different drug combinations have been tried in the treatment of GvHD, using our results, it is possible to find individualized treatments for patients,” says doctoral candidate Daehong Kim from the University of Helsinki.

Further studies using larger cohorts of GvHD are warranted to understand whether clonal mutations in T cells modify GvHD severity, drug responses and clinical outcome.

Story Source:

Materials provided by University of Helsinki. Original written by Miia Soininen. Note: Content may be edited for style and length.

Source link

Recent Comments
    Categories
    About Exponent

    Exponent is a modern business theme, that lets you build stunning high performance websites using a fully visual interface. Start with any of the demos below or build one on your own.

    Get Started
    Privacy Settings
    We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
    Youtube
    Consent to display content from Youtube
    Vimeo
    Consent to display content from Vimeo
    Google Maps
    Consent to display content from Google
    Spotify
    Consent to display content from Spotify
    Sound Cloud
    Consent to display content from Sound
    Cart Overview